

TERMINOLOGY

Electrons are the basic unit of electricity.

Electrons are very fast.

Electrons do NOT like to be slowed down, so they seek the path of LEAST resistance.

Electrons flow down hill.

Conductors

RTA321

Materials that allow electrons to flow easily are referred to as conductors. Materials that limit or prevent electron flow are referred to as insulators.

Insulators

Electrical Circuits

Are closed loops OR circles of CONDUCTORS

Electrons (unit of electricity) FLOW through circuits according to some basic rules.

Electrons (unit of electricity) FLOW through circuits according to some basic rules.

known collectively as:

OHM'S* Law

*OHM was a guy who lived in the 1800s

RTA32

OHM'S Law describes the relationship between three electrical properties.

OHM'S Law describes the relationship between three electrical properties.

STA32

Voltage

Current

Resistance

Find a nice intro here.

OHM'S Law says:

V=IxR

Read as :: V equals I times R or :: Volts equals Current times Resistance

Voltage

The difference in electrical potential (energy) between two points in a circuit.

Measured in Volts (v)

THINK: Amount of **force** of **electrons**.

Current

A measure of the **quantity of flow** of electrons

- Unit is Amps or Amperes (A)
- Often measured in milliAmps (mA) or thousandths of amps

THINK: current (flow) of a river.

Resistance

- Measured in Ohms (Ω)

A measure of the restriction (opposition) to the flow of electrons in a circuit. (Note :: all conductors have a resistance, weird - its just small).

THINK: Tap or damn blocking flow of a river.

Electrical Components have VOLTAGE and CURRENT limits.

If we fail to respect these limits we can **hurt** our components.

This can involve smoke and heat.

Intro to Electronics

OHM'S Law

So, our GOAL when we make our first circuits will be to create loops of conductors that let electrons flow.

Just like an

So, our GOAL when we make our first circuits will be to create loops of conductors that let electrons flow.

Just like an

ESCHER

Workshop :: W01 Intro to Electronics

ESCHER's

Waterfall (1961) is an excellent way to visualize what happens inside a circuit.

Image is cropped — source.

Workshop :: W01 Intro to Electronics

RTA32

Continuous loop.

V = height of fall
I = amount of water
R = barriers on path

It also captures the impossibility of what we are doing.

Image is cropped — source.